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Abstract
Let X be a normally distributed random" variable with mean p and variance
ar2 = ai + 4 . A lower confidence limit for a quantile of this population

(i.e., a tolerance limit) is to be determined using data from a one-way bal-
anced random effects ANOVA sample with between-group and within-group
variances o' and o. respectively.

For example, let X represent the strength of a randomly selected spec-
imen of a material manufactured in a batch which can be considered to
be randomly selected from a population of batches. A quantity of inter-
est to aircraft designers is the 'B-basis value', which is a 95 percent lower
confidence limit on the tenth percentile of the distribution of X. For this
situation, it is important that nearly the nominal coverage probability be
attained whatever the uwknown population variance ratio. It is also very
desirable that the calculated limit be as large as possible, since unnecessarily
low values cause undue conservatism in design.

This problem is closely related to the Behrens-Fisher problem. We have
in the one-way ANOVA two independent mean squares with expected values
equal to linear combinations of the variance components, while for the two
sample problem the expected values are the sample variances. The Welch
series approach (Welch, 1947) can be applied here to produce an approxima-
tion which is adequate for many batches. A little known paper by Trickett
and Welch (1954) describes an equivalent integral equation which is applied
to the tolerance limit problem with dramatic results. Unlike the Welch series
calculations, which are as tedious to do today as they were forty years ago,
the Trickett-Welch approach is numerical, and one can calculate the succes-
sive approximations to orders inconceivable in 1954. In fact, though there is
strictly speaking no 'well behaved' exact solution to this problem, one can
get amazihgly close to the nominal coverage probability for any value of the
nuisance parameter by beginning with the first order Welch approximation
and iterating an improvement of the Trickett-Welch procedure numerically.

A solution due to Mee and Owen (1983) based on Satterthwaite's (1946)
approximation for the distribution of a linear combination of x2 random
variables is compared with the above approach and with the solution for
known variance ratio. The comparison is made both in terms of the cov-
erage probability and by calculation of the probability distributions of the
tolerance limits.



1 Introduction

If a material is manufactured in many large batches and the population of
interest consists of all batches, a random effects model may be an appropriate
model for measurements made on characteristics of the material.

Let Xj denote the jth of J observations from the ith of I batches. If
Xj follows a one-way balanced random-effects model, then

Xii =A + bi + ei,(1)

where pi denotes the population mean, IL + bi denotes the mean of the ith
batch, and eij is the error term. The bi's and the eij's are assumed to
be independently distributed normal with mean zero and variance aC and
01 respectively. An observation X from this population is thus normally
distributed with mean A and variance

= 2 (2)
This paper presents techniques for determining one-sided tolerance limits

for X based on a random sample of J items from each of I batches. A (0, y)
lower tolerance limit is a random variable T such that at least a proportion/3
of the population is covered by the interval (T, oo) wi~h probability at least
-. The methods developed here for lower tolerance limits can be adapted in
an obvious way to upper limits. We will refer to 3 as the coverage and - as
the coverage probability.

An important industrial application of tolerance limits is to the charac- DT

terization and certification of structural materials for aircraft. In order to
determine the acceptability of material for aircraft applications, designers
use 'material basis properties' which are tolerance limits on the strength /
of a material as determined from experimental failure data. A (.90, .95)
lower tolerance limit is called a 'B-basis' value or 'B-allowable'. The more
stringent (.99, .95) limit is referred to as an 'A-basis' value or 'A-allowable'.

There is increasing interest in the use of composite materials as
lightweight alternatives to metals for aircraft applications. Composite ma-
terial properties typically exhibit far more batch-to-batch variability than
do metals; consequently there is a growing need for methods to determine
one sided tolerance limits in the presence of batch-to-batch variation.

Various approaches to this tolerance limit problem will be discussed be- 0
low. The ratio of population variance components is a nuisance parameter 0

for this problem. How one chooses to address this complication is a distin- -.---------- 7
guishing feature of the alternative methods.
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Section 2 presents a method due to Mee and Owen (1983) based on
Satterthwaite's (1946) approximate distribution for a linear combination of
mean squares. A modification is suggested which slightly improves on the
Mee-Owen result.

In Section 3 the exact solution is derived for known variance ratio in
terms of a generalization of the noncentral t-distribution. This distribution
is used in Section 4 to examine the effect on the coverage probability -/ of
pooling and using a simple random sample procedure when the variance ratio
is not zero. Section 5 consistb of an asymptotic series solution (following
Welch (1947)) for the tolerance limit limit factor to terms of 0(1/n). In
Section 6 this problem is formulated as an integral equation and a method
due to Trickett and Welch (1954) is applied. Following the improvements of
Section 7, this approach is shown to provide virtually exact tolerance limits
for the case of an unknown nuisance parameter.

The Trickett-Welch approach has received little attention in the statistics
literature. The dramatic success of this numerical method for the problem
considered in this paper suggests that one might profitably apply this tech-
nique to a large class of inference problems. Two such potential applications
are outlined in Section 8.

The cumulative distribution function of the tolerance limits are examined
in Section 9. These cdfs may be easily calculated in terms of the generalized
noncentral t-distribution of Section 3.

The discussion of the various tolerance limit procedures in Section 10
makes use of both the calculated coverage probability as a function of the
nuisance parameter and the cdfs of the tolerance limits in making compar-
isons.

Finally, a simulated dat: !--- mple is considered in Section 11.

2 The Mee-Owen Procedure

Let n = IJ denote the sample size. The parameters A, a,2 and a2 of the
random effects model may be estimated by the pooled mean A, the within
batch mean square MSe, and a linear combination of MSe with the between
batch mean square MSb where:

(3)

i= j=1

.... . ......... . .. -- - -- -- mm i nm lmln m m2



Mb=Jj(i-X-IM i I A X (4)

and
M = (XJ - X1)2

M s l=EE I(J-1) (5)
i=1 j=-"l 1

An unbiased estimator of the population variance 0X is

a, = MSb/J + (1 - 1/J)MSe. (6)

For 0 < 0 < 1, let K,8 be the 0 quantile of the standard normal distri-
bution, i.e

= KPL1 e 2/2 dt. (7)
A(3, ) lower tolerance limit is a 100y percent lower confidence bound for

i - Kox. (8)

By analogy with the single sample case (see, for example, Owen (1968)), one
seeks an estimator of the form

A- kax, (9)

where k is chosen to satisfy

P(A - kbx < , ji - K3ax) =(10)

Since A is distributed normal with mean u and variance

a;2 = (Job + o,.)/n, (11)

one may rewrite (10) as

p ( Z + V'niKBB <'k11 7 (12)

where
Z A -(13)

B R + 1 (4
JR+I' (14)
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and 2 2R _abIa.. (15)

The random variable (&2o/a2 ) is approximately distributed as the ratio
of a X2 to its degrees of freedom, where the degrees of freedom are given by
Satterthwaite's (1946) approximation:

f = (R+ 1) 2  (16)
(R 2 +

If TJ-( 6) denotes the inverse of the noncentral t-distribution with f de-
grees of freedom and noncentrality parameter 6 then one may make the
following approximation:

k 1(17)

Unfortunately, this tolerance limit factor k depends on the nuisance param-
eter R. Mee and Owen (1983) suggest replacing R with

j F, , (18)
P 

I

where F is the 100,9 percentile of an F random variable with numerator
and denominator degrees of freedom I(J - 1) and I - 1, respectively. Rl, is
a 100i/ percent upper confidence bound estimate for R (Searle, 1971, p.414).

Having made the approximation ( 17), we may determine the coverage
probability

P(A - k(.R,?)&x :_ y - Koax) = 7 "(r1, I,J,R). (19)

As R tends to infinity, (17) becomes

k = TF1 (7, VI KO)/i (20)

for all 77 and J. The case of infinite R corresponds to a. = 0; the model (1)
reduces to a simple random sample of size I, and ( 20) provides an exact
solution. Hence for all qi, I, and J

lim -y*(r, I, J, R) = -. (21)
R-oo

For R sufficiently small, it can be shown that -t* exceeds the nominal level
-y. However, in general -t* will be less than -f for an interval of intermediate
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R values. It turns out that one can determine q = r(/3 ,-) numerically so
that -y" > 7 for all I, J, and R. These 7 values are reproduced from Mee
and Owen (1983) for various combinations of /3 and -y in Table 1.

The first improvement to this tolerance limit procedure that we will
consider is to allow q? to vary with I and J. This gives a modified Mee-
Owen procedure with coverage probability closer to the nominal value. The
result of this numerical work for the case of/3 = .90 and 7 = .95 is presented
in Table 2.

3 An Exact Solution for Known R

For a simple random sample, a solution to the one sided tolerance limit
problem is readily obtained in terms of the noncentral t-distribution. If one
assumes that the variance ratio, R, is known, then the corresponding prob-
lem for a sample from a balanced random effects model can be solved almost
as easily. What is required is the distribution of a 'generalized noncentral t'
random variable, a generalization of the noncentral t to a random variable
with the square root of a linear combination of two X2's in the denominator.

Let b = v~_/K B, nj = I - 1, and n2 = I(J - 1) where B is defined in
(14). If R is known, the tolerance limit factor k is the appropriate quantile
of the distribution of

Zd j dY (22)

where Z has a standard normal distribution; Y is distributed as a X2 with
ni degrees of freedom for i = 1,2; d1 , d2, and 6 are constants with d, and d2
positive; and Z, Y1, and Y2 are mutually independent. Once this distribution
has been determined the tolerance limit may be obtained exactly. The cdf
of the linear combination Y =- diY1 + d2Y2 is show in Fleiss (1971) to be

Fy(y) = E. 2  (y/(djX + d2 (1 - X)))], (23)

where X2 is the chi-square cumulative distribution with f degrees of
freedom and the expectation is with respect to a beta random variable, X,
with parameter v = (n1/2,n 2/2).

By conditioning on the denominator of ( 22) one sees that

FA(k) =_P(A < k) = E,, [Tnj +n2 (k d1 X + d2 (1 - X), 6)] (24)

5



where Tf(t, b) denotes the noncentral t cumulative distribution with f de-

grees of freedom and noncentrality parameter 6, i.e.

Tj(t, 6) = jo°° (ty/ -6) C1 (w) dw, (25)

where C1 denotes the x2 density with f degrees of freedom and t(.) is the
standard normal distribution.

For the tolerance limit problem, let

d, = (n, + n2)II(26)

and
n_ + n2

d2 = JR + 1 (27)

where I, J, K, and R are as in Sections 1 and 2 and nj, n2, and 6 are
given above. The value k(R) such that FA(k) = 7 thus provides an exact
solution to the problem of known R.

Although the above derivation is simple, it is apparently not well known.
A much more complicated representation of the distribution of the random
variable ( 22) is developed in Ray and Pitman (1961).

4 The Effect of Pooling on the Coverage
Probability

The tolerance limit procedure discussed in Section 2 is conservative (i.e.
provides a coverage probability greater than the nominal value) when the
population variance ratio, R, is small. Mee and Owen (1983) therefore sug-
gest that data be pooled and that a single sample method be applied when
the mean square ratio is less than one. They then proceed to investigate the
conditional behavior of their proposed estimator.

Using the distribution developed in Section 3, we shall determine the
coverage probability for a single sample procedure applied to pooled data as
a function of the variance ratio. This result will be used to determine the
unconditional coverage probability of the Mee-Owen method in Section 10.

Let Y1 and Y2 be as in ( 22) and let n1 and n2 denote the between and
within batch degrees of freedom respectively. The pooled variance estimate
is

Es2 ( - i)2  (28)
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where n denotes the pooled sample size, I the number of batches, J the
batch size, and A the grand mean. Partitioning the total mean square and
substituting (11) for the variance of A, one obtains

S2 ¢2y2 + (d,7b + ,)Yl (9
- n o__, _(29)_

a2 n - I JO,6 +a 02

If k0 denotes the single sample tolerance limit factor (e.g. Owen, 1968, pp.
446-448), then the coverage probability as a function of R is

j(R) = P(A - koSp S_ j - K3ox)

= i( Z + oKB , (30)

with notation as in Section 2. Substituting ( 29) into ( 30) and employing
the distribution ( 24), one may readily examine j(R) numerically. For the
present application of ( 24) the constants d, and d2 can easily be determined
from inspection of ( 30); they are different than the values assigned in ( 26)
and (27).

From the typical plot in Figure 1 it is apparent that the coverage prob-
ability obtained will be substantially less than the nominal value even for
fairly small values of R. Clearly, criteria which result in the decision to
pool must be considered carefully if one is to minimize the risk of very an-
ticons-r-i tive tolerance2 limits in the presence of batch-to-batch variation.
Alternatively, one might seek an estimator which performs well for all R,
eliminating the consideration of pooling altogether. This approach will be
taken in Section 6.

5 The Solution for Unknown R: 'Welch-Aspin
Series

For unknown variance ratio, the tolerance limit problem is closely related to
the Behrens-Fisher problem. Since it has been shown by Linnik (1968, Ch.
9 ) that there is no 'well behaved' solution to the Behrens-Fisher problem,
it follows that we also are faced with a problem without an exact solution.
However, one can proceed as if a solution does exist and attempt to approxi-
mate it. Following the work of Welch (1947) and Trickett and Welch (1954),
two forms for such an approximate solution are obtained.
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A series solution is developed first. While computationaUy simple, the
first order approximation presented here is anticonservative and may only
be suitable for many batches.

One could improve this procedure by taking higher order approxima-
tions. However, this becomes very tedious to carry out. Alternatively, the
tolerance limi. factor as a function of the mean square ratio may be ob-
tained approximately as the solution of an integral equation. Although this
requires the use of a computer, the method which results appears to give
very nearly the nominal coverage probability - even for small sample sizes.

To simplify the notation in what follows, let 5'? be the mean squares, a?
their expected values, and n, the asociated degrees of freedom for i = 1,2,
i.e. :

S' = MSb, a 2 = Ja + a2, n 1 =I-l,
S2  MS, '7=e n2 = I(J - I).

The pooled sample size is n = IJ and the population variance is denoted by

a2 2 = a2 + a2(1 _ 11j), (31)

and estimated by

S 2 =6, = S/J +S0 - /J). (32)

The subscript X for the population variance and estimates of this variance
will be omitted for the remainder of this section.

The tolerance limit factor will be denoted k as in (10) , and we define
h(S?, S2) to be k&. The tolerance limit may be expressed as an expectation
with respect to the distributions of the mean squares in terms of the standard
normal distribution:

7 = k&< -Koa)

E E[PZh (S2,S2) (3))

where as above
KO4 /n(R+ 1) K a (34)TR + 1 al/=~

The problem is to determine a function h(?, S2) so that (33) is ap-
proximately satisfied for all a2 and a2. If tolerance limits on the median are
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desired, then b = 0 and the results of Welch (1947) and Aspin (1948) may
be used directly. If 6 is not zero, the idea behind the Welch-Aspin derivation
may still be applied, although the algebra is considerably messier.

The Welch-Aspin approach makes use of certain differential operators
in developing an 'asymptotic' series for h. The same approach may be
used here, but for first order calculations the additional formalism is not
justified in terms of algebraic simplifications. For this reason, the discussion
below consists of a straightforw-ard Taylor series derivation. Of course, both
methods must give the same answer, and this has been used to provide a
check on the calculations.

Begin by rewriting ( 33) as

E [ P (l. + U)] =,(35)

where

K, + U - h(S2,S2
2) -6 (36)

Expand h in a series of inverse powers of ni,

h = ho + h, + 0(1/m 2), (37)

where
m = min(nh,n 2).

Up to terms of second order in h we have that

hI(S?,S2) ho(S2,S2) K,aU ,/ = + . I , (38)

where we have substituted ( 34) for 6.
For the zeroth order approximation we approximate h(S2, S2) by

and we have, U = 0 and

K-, = ho(a?,a22)- Kga (9
a, - (39)

or ho( S2,S 2 ) - K.S, + IS. (40)

9



For the first order expression, we approximate h by

ho(S',s ) + h 2(s ,s ) t ho(S2,S2) + hi(0, ) =

then

U = AjU1 + K 2 + hi(aj,a2) (42)

where

l = -(43)
al

and

U2 S- - (44)

Let denote a x2 random variable with f degrees of freedom and define

v", - l , 1 (45)
ni

for i = 1,2. The Uj can be expressed in terms of the V,, as follows:

U1  (1+V) 1
/

2 -1, (46)

u2 2/v -__ (1 + vV) 1 (47

After expanding the square roots in (46) and ( 47) in power series,
one can readily obtain approximations to the first two moments of the Uj
suitable for first order calculations:

1
E(U 1 ) :, -41 (48)

1 (49)

E(Ua) 2  (5 )

E(U2) F =- l + , (0
1O, /N + ' (51)
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and

E(UU 2 ) , 1 (52)
JaI'V 2n1 '

where

nL
2

a, -(53)

and

a 2  -24(1 j-1)2n1/2 (54)
O" 0

3

The next step is to expand the normal cdf about A71, so that (35) may
be replaced by the following approximation:

E [, (K-, + U)] = - t t(Kf)

+¢(K.-)E(U) - K.I¢(K.y)E(U 2 )/2, (55)

where 0(.) denotes the standard normal density. The expectation of U can
be determined immediately from ( 42), ( 48) amd ( 50). Since

E(U 2) = KE(U?) + K0 E(U2) + 2KO K.1 E(UU 2 ) + O(1/rm2 ), (56)

we need only substitute ( 49), ( 51) and (52) into ( 56) in order to complete
the evaluation of ( 55).

To complete these calculations, solve ( 55) for hi(alo' ) (note that h,
appears through E(U)), replace each occurrence of oa or 0,2 with S2 or
S 2 respectively (i = 1,2) and divide hl(S2,S2) by S to finally obtain the
tolerance limit factor k. The terms of k may then be rearranged to reveal
their structure. The following expression for k is one possibility:

ICO + Iw w [K! (K4 + 1)

+2K,oK~v(I7W + 2 K W 2
+ + 0-

n I  nj

KVrw _ J( 1)2W2
+ K W + K . Q2

+ IC(J - 1)2VW 3 ] (57)
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where
W (1 + (J - 1)/Q) - 1/2  (58)

and

(59)
The coverage probability for the above approximation as a function of

the population variance ratio is plotted in Figure 2 for a (.90, .95) tolerance
limit and J = 5. Note that for many batches the series solution performs
well, though for few batches it is anticonservative.

6 An Alternative Solution for Unknown R

For small samples, the first order approximation developed above may not
be adequate, and higher order calculations are clearly prohibitive. An al-
ternative approach is to view the problem as an integral equation, following
Trickett and Welch (1954).

If one defines
r - JR + 1 (60)

then ( 24) may be written as

E, [T.,+., (k(T)(nl + n 2 )1/ 2  + 1 X 6(r)) , (61)

where

6= v/nKIB= K#1 (1+LJ--  ) (62)

and B is defined in (14). The parameter r may be estimated by the mean
square ratio ( 59):

Q = rFnil (63)

where Fn, .n, denotes a random variable having an F distribution with nj and
n2 degrees of freedom. The tolerance limit problem reduces to determining
a function k(Q) such that

- Z +6b(T) < -Q
(+ )

= P Z<k('n2 Y 1 +L'2 -) (64)

12



for all values of r > 1, where Z, Y1', and Y2 are as in Section 3. This is
equivalent to the integral equation

Vk)= E, n~n (jcn, n2 n) 1 12  +I 1

(65)
where heeQ = rn2X (66)

ni(1 - X)

and the expectation is with respect to a beta density with parameter v =
(ni/2, n2/2).

In Section 5, we derived an approximation to k(Q) which we label
here ko(Q). We intend to improve this approximation by replacing it by
k1(Q) = ko(Q) + ¢(Q) and we will employ

k(E,Q) =ko(Q) + CIP(Q), (67)

noting that k1(Q) = k(1,Q).
Expanding V, [k(c, Q)] in a Taylor series gives the first order approxima-

tion
Y(C) = V, [kO(Q) + Co(Q)] V.,(ko(Q)) + C (68)

Employing this result, the equation leading to our next approximation may
be written as

-Y = Y(1) =

V,(ko) + E. f(Q)(ni + n2/)1/2 XI1+ 1-X

+n o(Q)(n +N2 )1/2 +I 1 -X'669

where tn1+n2 (.,.) denotes the noncentral t density. The noncentra t density
with f degrees of freedom and noncentrality parameter b may be calculated
by means of the following formula (Odeh and Owen, 1980, p. 272):

t1 (z,6) = f [T1+2 ( 6) -
T (z )  (70)
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Since there are computer subroutines available for determining the non-
central t cdf (see, e.g., Grifliths and Hill, 1985), ( 70) is very useful for
computation.

The first term on the right hand side of ( 69), V, (ko), may be evaluated
numerically for given r since ko(Q) is a known function.

The second term can not be evaluated without knowing 0. To simplify
matters we shall pretend that O(Q) assumes a constant value and can be
factored out of the expectation. The Trickett-Welch approach consists of
replacing O(Q) by (qo) where q0 is that value of Q corresponding to the
mean x0 of the beta random variable X, i.e.

rn 2xo _ rn2nu/(n, + n2 ) (71)

n1(1 - xo) nln 2/(n, + n2 )

Thus we have
-Y ;z 1(ko) + V(r)y,,(ko) (72)

where

vl,(ko) -(73)

E[(nl + n2 )+ 771 r

.otini +)n + n2 )1/2  XI +

y- v(ko)
V,( (ko) ' (74)

and
k,(r) = ko(r) + (r). (75)

Our numerical integration depends on the use of ko for a mesh of Q or r
values from 0 to 00. We can compute k, for the same mesh. This kl(Q) can
be used as the ko(Q) for the next iteration.

The approximation which allows O(Q) to be removed from the integrand
is crude. It is certainly not obvious that this procedure will provide any im-
provement on the first approximation. In fact, if one were to implement the
algorithm presented in this section on a computer, one would see that the
coverage probability improves only slightly before the successive approxi-
mations begin to diverge. By employing this method as improved in the
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following section, we can do much better. The improvements of Section
7 result in an algorithm which provides a solution to the tolerance limit
problem of unknown R that is (for practical purposes) exact. All mention
of results of applying the Trickett-Welch method in this paper refer to the
modification to be discussed in the next section.

7 A Modification of the Trickett-Welch
Approach

In order to obtain useful results from the integral equation approach of
Section 6, it is necessary to improve the rough approximation by which
the unknown function 0b is removed from the the expectation in ( 69). The
technique by which this approximation is improved is based on evaluating
tO(Q) for a value q, of Q corresponding to x, of X where the integrand of V1,
in ( 73) achieves its maximum, instead of Z0, the mean of the beta density,
which may be close to where this density achieves its maximum.

For any value of r, we can determine the desired desired peak zl(r)
numerically, and define rn2xl(T")

q rn 7 (76)n1(1 - xl(,r))"

It is fortunate that in our tolerance limit problem, the value xl(r) is nearly
independent of r. Thus, O(Q) can be evaluated at or very nearly at a
specified grid of q, values by adjusting r after the nearly constant value x'
of x 1 (r) is approximated for a typical r value.

One difficulty with the above proposal arises from the fact that, strictly
speaking, r should only be taken to be greater than one, in which case the
range of q, values is from n2 zX/[n1(1 - x*)] to oc instead of from 0 to co as
is required for the numerical integration. Since n2X*/[nl(1 - x*)] turns out
to be relatively small, we translate the value of q, by this amount, so that
the range of q values will be 0 to co. In other words, we replace ko(ql) in
the approximation

y = -/(1) = Vr(ko(ql)) + iP(q1)V1-(ko(q1)) (77)

by ko{ql - n2X*/[nl(1 - x*)]. After this approximation is carried out, the
method can be iterated using

ni(1-Z)] = k [ ) ni(l - z)] + 0(ql) (78)
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to replace k0.
With each iteration the value of the constant zx is likely to change and

should be recalculated.
The above simple improvement of the integral mean value theorem ap-

proximation underlying the Trickett-Welch approach enables one to calcu-
late tolerance limit factors which provide very nearly the nominal coverage
probability even for few batches and small batch size.

The Trickett-Welch approach, possibly with modifications similar to
those discussed in this section, promises to be applicable to other problems,
two of which are considered below.

8 Other Applications of the Trickett-Welch
Approach

The Trickett-Welch approach can be applied to a wide range of problems of

inference in the presence of a nuisance parameter. Two examples of such
problems are outlined in this section.

8.1 Confidence Intervals for the Population Mean

For the random effects model of Section 1 a two sided confidence interval for
the population mean is desired which attains nearly the nominal confidence
level whatever the population gintraclass correlation

P a+ 7 R (79)

Let Dl(.) be an unspecified function of the mean square ratio (59). With
notation as in Sections 5 and 6 we have

- = P(j - DIS <S A < A + DIS). (80)

This is easily shown to be equivalent to the integral equation

I+-/(S?/E DS (81)

where the expectation is with respect to the distributions of the mean

squares. The methodology presented in this paper can be applied directly.
An important feature of this example is that it provides a method which,
for a particular simple situation, avoids the problematic issue of 'when to
pool'.
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8.2 Testing the Equality of Two Normal Percentiles

Another thinly disguised version of the Behrens-Fisher problem is the prob-
lem of testing the equality of two normal percentiles where population means
and variances are unknown. Two statistics for performing such a test are
proposed by Cox and Jaber (1985). These tests require simulation in order
to obtain approximate critical values for the test statistics. The method
outlined below, though its properties have yet to be examined, requires no
Monte-Carlo tables.

We wish to test equality of the 1000th percentiles of two normal popu-
lations on the basis of simple random samples from each population. That
is, we are interested in testing the null hypothesis

HO YI + K, 0 1 =Yp2 + Kua2  (82)

against the alternative

H1 l + Ka4i # 42 + KOa2, (83)

where pi and ai are the population mean and standard deviantions for i =

1,2 and KO is defined in ( 7).
Denote the sample means and variances by AXi and S? and let the sample

sizes be ni. Define the statistic

T = (X + KOSI) - (1 2 + KOS 2) (84)

We propose to reject the null hypothesis when ITI is sufficiently large. A
function D2 which provides such a test (of size 1 - y) can be shown to
satisfy the following integral equation, where as above the expectations are
with respect to the mean squares:

E [1 (D 2 - ICO(Si - S2 +a2 -aO)]- (85)

which is in a form to which the techniques of this paper may be applied.
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9 The Distributions of the Tolerance Limits

Once the function k has been determined it is straightforward to calculate
the cumuldtive distribution function of the tolerance limit. It is obviously
preferable to compare distributions of confidence bounds rather than merely
confidence levels, and we make such a comparison in this section.

We consider a (.90,.95) lower tolerance limit for a normal population
with tenth percentile zero and variance one. In Figure 3, the cumulative
distributions for I = J = 5 of the proposed tolerance limit are presented for
various values of the intraclass correlation p = R/(R + 1).

Note that all of the curves pass very nearly through (0, .95), indicating
the striking success that we have had at removing the nusiance parameter,
even for as few as five batches. As the intraclass correlation is increased the
random effects sample goes from behaving essentially like a single sample of
size n = IJ when p = 0 to being equivalent to a single batch of -ize I when
p = 1.

In Figure 4 three cdfs are plotted, corresponding to the Mee-Owen
method, the proposed method and the the solution for known R. The
intraclass correlation is taken to equal zero and the sample size is again
I = J = 5. Note that the result based on the Trickett-Welch approach is
clearly preferable to the Mee-Owen solution and doesn't fare too badly when
compared to the known-R solution.

10 Discussion

The situation of primary interest to the aircraft industry, (.90, .95) lower tol-
erance limits, is used here for illustration. Four methods have been presented
in this paper: the Mee-Owen method (Section 2), a modified Mee-Owen
method (Section 2), a method based on the Welch-Aspin series (Section 5),
and a method based on an integral equation (Sections 6, 7). The coverage
probability functions corresponding to these methods are numbered 1-4 in
Figure 5 for five batches each of size five.

The integral equation approach virtually removes the nuisance parameter
from the problem. The Mee-Owen method has the disadvantage of being
substantially conservative when the variance ratio is small.

Only a slight reduction in this conservatism has resulted from the mod-
ification of the confidence level of the variance ratio estimate (Section 2,
Table 2).
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The Welch-Aspin series solution is clearly not suitable for as few as five
batches, as discussed in Section 5. However, it is easy to compute and
provides an adequate starting function for the iterative integral equation
approximation ( 69).

From the rescaled plot of the coverage probability function for the inte-
gral equation solution (Figure 6) it can be seen that for R > 1 the actual
coverage probability differs from .95 by no more than ±.00005. This small
difference can be attributed to the limited accuracy of the numerical integra-
tion. For R < 1, however, the difference in the actual and nominal coverage
probability increases substantially, but never does it reach a magnitude that
warrants concern for applications.

Figure 6 illustrates the convergence of the Trickett-Welch approach for
various values of the intraclass correlation. Note that for practical purposes
ten iterations is adequate, although some slight improvement may result
from considering more iterations.

11 Example

The data in Table 3 are a pseudo-random sample of 25 from a normal dis-
tribution with mean 50 and standard deviation 10. These data have been
arbitrarily grouped into five batches of five. By fitting a one-way random
effects model to these data one obtains :

MSb = 89.88, MSe = 158.6, (86)

= 48.30, b3 = 144.9. (87)

A (.90, .95) lower tolerance limit is of the form

T = A - K&x. (88)

For the method of Mee and Owen (1983) K = 1.90. If the Mee-Owen
method is modified as suggested in in Section 2, then K only decreases
to 1.89. The series solution of Section 5 gives K = 1.78 and the integral
equation of Section 6 results in K = 1.83. The tolerance limit estimates are,
respectively, 25.42, 25.54, 26.82 and 26.29. These values may be compared
with the tolerance limit estimate for the pooled data, which is 26.00.
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12 Conclusion

One-sided tolerance limits for random effects models is a topic of consid-
erable importance in engineering statistics. The purpose of this paper has
been to consider this tolerance limit problem from the point of view of the
Welch interpretation of the Behrens-Fisher problem. This approach leads to
a method which provides essentially the nominal coverage probability what-
ever the value of the nuisance parameter. We have demonstrated that in
addition to excellent coverage properties, the distribution of the proposed
tolerance limit compares favorably with an existjngprocedure and with an
exact solution for known nuisance parameter. , !
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Table 1

qValues for (p, yr) Tolerance

Limits (Nee and Oven, 1983, p.90)

yI

.90 .95 .99

.90 .78 .85 .94

P.95 .79 .86 .95

.99 .81 .875 .96



Table 2

n Values for (.90, .95) Tolerance

Limits for the Nee-Oei Method.

ROWIS: umber of batches

COLUMNS: Batch size

3 4 5 6 7 8 9 10

3 .63 .69 .73 .75 .76 .77 .78 .79
4 .75 .78 .80 .81 .82 .82 .83 .83
5 .80 .82 .83 .83 .83 .84 .84 .84
6 .&4 .83 .83 .84 .84 .84 .84 .84
7 .82 .83 .83 .84 .84 .84 .84 .84
8 .82 .83 .83 .84 .84 .84 .84 .84
9 .82 .83 .83 .84 .84 .84 .84 .84
10 .82 .83 .83 .83 .84 .84 .84 .84



Table 3
Example Data

Batch i-

23 45

5.5 38.46' 30.5F 55.65 60.41

40.70 43.24 29.1Z 50.68 64.45

24.67 66.62 46.29 67.62 36.57

30.60 51.95 63.8Z 42.02 59.76

5251 38.50 51.71 41.0M0e



Appendix
FORTRAN source code listings

Listed below are the routines used to perform the calculations
in this paper. All of the required software is listed with
the following exceptions:

1) Routines in the IMSL library
2) TEKTRONIX PLOT-10 graphics subroutines
3) The noncentral-t distribution with non-integer

degrees of freedom ('TNC', Algorithm AS 243,
Applied Statistics (1989) v. 38)

4) Routines called by 'TNC' above, all of which are
in Griffiths and Hill (1985).

The routines listed in this appendix are available in
computer readable form at no charge from the author. Send a
floppy disk (IBM-PC) or a magnetic tape for a copy of the
source files.

This code is a prototype intended as a research tool.
It is not suitable in the present form for general purpose
use.

Main programs:

TRICK -- Program to calculate tolerance limit factor
by the modified Trickett-Welch approach for
a balanced nested mixed model, a simple
generalization of the model considered in
this paper.

PLTCDF -- Program to calculate and plot distribution
functions for tolerance limits. This program
uses as input tolerance limit factor files
created by program 'TRICK'.

COVRGE -- Program to calculate the coverage probability
vs. intraclass correlation functions from
tolerance limit factor files created by
program 'TRICK'

Subroutines:

EVCDF -- Routine to evaluate the cdf of a tolerance
limit. Called by 'TLMCDF'.

FNCK -- Function called by root finder in 'INVNCT'.

FNCN -- Function called by root finder in 'INVSPN'

FNCR -- Function called by root finder in 'KR'.

FNCS -- Function called by maximization routine in
'FSUP'.

FNCY -- Function called by numerical integration
subroutine in 'GENDS2'.

FNCZ -- Function called by numerical integration
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subroutine in 'EVCDF'.

GENDS2 -- Function to calculate cdf of a generalized
noncentral-t random variable.

INISPL -- Subroutine to initialize spline interpolation
of tolerance limit factor.

INIT -- Initialization routine for 'TRICK'.

INTEQN -- Top-level subroutine for solving Trickett-welch
integral equation. Called by 'TRICK'.

INVNCT -- Subroutine to determine noncentral-t quantiles.

INVSPN -- Subroutine to perform inverse spline interpolation.
Called by 'MESH'.

KFACT -- Subroutine to determine tolerance limit factor for
a simple random sample from a normal distribution.

KMO -- Subroutine to calculate the Mee-Owen tolerance
limit factor. Since the Satterthwaite degrees
of freedom need not be an integer, it is because
of this routine that the Applied Statistics
subroutine 'TNC' is used. For integer degrees of
freedom the IMSL routine is adequate.

KR -- Routine to determine the tolerance limit factor
for known variance ratio.

KSPLN -- Spline interpolation for tolerance limit factor.

MESH -- Subroutine to improve the mesh of nuisance
parameter values. Initially, the Welch series
is evaluated for equally spaced values of the
ratio of mean squares. A spline is fit to this
function, the ordinate is divided into equal
intervals, and the spline is inverted to provided
new abscissa values which will be closer together
where the function has a larger derivative. This
new mesh is used for all future iterations.

NCTDIN -- Called by 'NCTDRV'. Noncentral-t density.

NCTD2N -- Called by 'NCTDRV'.

NCTD3N -- Called by 'NCTDRV'.

NCTD4N -- Called by 'NCTDRV'.

NCTD5N -- Called by 'NCTDRV'.

NCTDRV -- Subroutine to recursively calculate any of the
first five derivatives of the noncentral
t distrivution. Derivatives beyond the first
are not used in the paper.

NEXTK -- Subroutine which calculates the next iteration
of the modified Trickett-Welch procedure. Called
by 'INTEQN', which is called by program 'TRICK'.

SUP -- Function to find the maximum of the Trickett-Welch
integrand in order to improve integral mean value
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approximation as discussed in Section 7. Called by
'NEXTK'.

TLMCDF -- Subroutine to calculate the distribution of the
tolerance limit. Called by 'PLTCDF' and 'COVRGE'.

WELCH Function to calculate the first order Welch series
approximation.

XINT Function to evaluate the two integrands for the
modified Trickett-Welch algorithm. Called by
'NEXTK' and 'FNCS'.
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program covrge
C

C
c Mark Vangel, Nov. 1938
c
c Program to determine points on coverage probability vs.
c intraclass correlation curves for tolerance limit factors.
c This program uses as input files created by 'TRICK'.
c
c ** Note: This program sends extensive output to the
c terminal which may be used for later plotting.
c On many computers this output will have to be
c redirected to a file.
c

real x(500), xk(500), xdx(100), cov(100)
integer n(3)
character*20 flenme, file2
character*3 citer
character*l ans
common /kw/ known, rho, xknown
data lfn /10/

c
c -- Filename (specified in 'TRICK')

write (*,*) 'filename '
read (*,'(a20) ') flenme

c
c -- Number of points at which coverage probability is to
c be determined

write (*,*) 'points per curve ?'
read (*,*) nrho

c
c -- Indices for tolerance limit factor files. These files
c are outp'it from 'TRICK'. The index corresponds to the
c iteration, it follows the hyphen in the file's name.

write (*,*) '1=range of indices, 2=individual indices '
read (*,*) iopt
if (iopt .eq. 1) then

write (*,*) 'min index, max index '
read (*,*) imin , imax
ndp = imax -imin +1

do 10 i-1, ndp
xdx(i) = imin +(i-l)

10 continue
else

ndp = 0
20 continue

write (*,*) 'index (0 to quit) ?'
read (*,*) idxl
if (idxl .eq. 0) go to 30
ndp - ndp +1
xdx(ndp) - idxl
go to 20

30 continue
end if

c
c -- Get parameters corresponding to tolerance limit factor
c from files refered to above.
c (nfix=1 for cased treated in the paper)

write (*,*) ' nfix, i, j ?'
read (*,*) n
k - n(2)
1 - n(3)
write (*,*) ' p '
read (*,*) p
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write (*,*) ' confidence ?'
read (*,*) g

c

c -- Intraclass correlation is not regarded as known.
known = .false.

c
c -- Loop over tolerance limit facotr input files.

do 40 i=l, ndp
c
c -- Build the file's name using the root name 'flenme' and
c the index number corresponding to the current iteration.

write (unit=citer, fmt-'(al,i2)') '-',int (xd-(i))
if (citer (2:2) .eq. ' '1) citer (2:2) '0'
lstnbk = 20

50 continue
if (flenme (lstnbk:lstnbk) .eq. ' ) then

lstnbk = lstnbk -1
go to 50

end if
file2 - flenme (l:lstnbk) //citer

C
c -- Loop over points on each curve

dr = 1/ float (nrho -1)
c
c -- Header for curve (you may want to direct succeeding output
c to a file for later plotting).

write (*,*)
write (*,*) Number of fixed factors : ',n(l)
write (*,*) Number of random batches : ',n(2)
write (*,*) Batch size : ',n(3)
write (*,*) ' Quantile : 'p
write (*,*) ' Confidence : 'g
write (*,*) Trickett-Welch iteration : ',int(xdx(i))
write (*,*)

c

do 60 j=l, nrho-l
c

rho = (j-l) *dr
r = rho /(. -rho)

c
c -- Varaince components and mean correspondi.g to L(.lezdrnh.e
c limit factor. The mean is taken to equal the percentile.

s2w = 1 /(l +r)
s2b = r *s2w
xmu = anorin (p) *sqrt (s2w +s2b)

c
c -- Subroutine to evaluate the coverage probability

call tlmcdf (xmu,s2b,s2w,n,p, 0., cov(i), file2)
c
c -- Write out intrclass correlation and coverage probability.

write (*,*) rho, cov(i)
60 continue
40 continue

stop
end
program pltcdf

c

c Mark Vangel, Oct. 1988
c
c Program to calculate and plot the distribution of a tolerance
c limit for a random effects model.
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C
logical known
character*20 flenme
character*l ans
dimension cdf (maxpts), quant (maxpts), ipoint (maxcrv),
$ crossx(2), crossy(2), n(3)

common /kw/ known, rho, xknown

C
ipoint (1) = 0
write (*,*) ' number of points per plot ?'
read (*,*) nq
nplot - 0

c
c -- Get parameters which are constant over plots
c ('nfix' - number of fixed effects in nested model)

write (*,*) nfix, i, j ?'
read (*,*) n
write (*,*) ' p '
read (*,*) p
write (*,*) ' confidence ?'
read (*,*) g
nfix = n (1)
k =n (2)
1 =n (3)

c
c -- Loop over all k-factor files.

write (*,*) ' Obrief output, !-complete output ?'
read (*,*) ibrief

I continue
c
c -- Specify a filename for tolerance limit factor
c (output from program TRICK)

write (*,*) ' Filename (''k'' if rho is known) '
read (*,'(a20)') flenme
if (flenme .eq. ' ') go to 2
write (*,*) ' Rho '
read (*,*) rho
if (rho .eq. 1) rho = rho -1.e-6

c
c -- Intraclass correlation known

if (flenme .eq. 'k') then
known = .true.
call init (p, g, n)

else
known = .false.

end if
c
c -- Var. ratio, var. components

r - rho /(l -rho)
s2w - 1. /(l +r)
s2b - r *s2w
xmu - anorin (p) *sqrt (s2w +s2b)

c
c -- Pointer to next plot

nplot - nplot +1
ipoint (nplot+l) - ipoint (nplot) +nq

c
c -- Calculate cdf at equally spaced points within specified range

write (*,*) ' Range of values for cdf ?'
read (*,*) qmin, qmax
dq - (qmax-qmin)/(nq-1.)

c
c -- Header for plot
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write (,)'Distribution of ',lOO*(1-p), I percentileI
write (,)' from ', qmin, Ito ', qmax
write I** Mean - ',xmu, I Var. components - ',s2b, s2w
write (*)'Tolerance limit factor file = ,flenme
write (,)'Number of groups, group size 1 , k, 1
write (,)'Confidence level = ,g

write(*)
c
c - Calculate points on cdf

do 20 i=l, nq
idx = (nplot -l)*nq +i
quant (idx) - (i-1) *dq +qmin
call tlmcdf (xmu,s2b,s2w,n,p,quant(idx),cdf(idx),flenne)
if (ibrief .eq. 1) then

write (*, *) quant (idx), cdf (idx)
end if

20 continue
go to 1

C
c -- Now plot the results
2 continue

write (*,*) 'Plots ?'
read (*,I (al)') ans
if (ans .eq. 'y') then

write (,)'Min and max for abscissa ?'
read (*) qmin, qmax
write (,)'Min and max for ordinate [0,0 for default) V'
read (** ommn, omax

C

c - Initialize PLOT-10 graphics
call mnitt (960)
call binitt

C
c - Set coordinate ranges

call comset (ibasex(l1), qmin)
call comset (ibasex(12), qmax)
if (omax .ne. 0.) then

call comset (ibasey(l1), 0mmn)
call comset (ibasey(12), omax)

end if
C
c -- Produce the plots

call npts (nplot *nq)
call check (quant, cdf)
call npts (nq)
call dsplay (quant, cdf)
do 30 i-i, nplot-1

call cplot (quant (i*nq+1), cdf (i*nq+1))
30 continue
c
c -- Plot crosshairs at quantile and nominal coverage probability

crossx (1) - xanu -anorin (p) *sqrt (s2w +s2b)
crossx (2) = crossx (1)
crossy (1) - 0.
crossy (2) = 1.
call npts (2)
call cplot (crossx, crossy)
crossx (1) - qmin
crossx (2) - qmax
crossy (1) = g
crossy (2) - g
call cplot (crossx, crossy)

C

c -- Hardcopy option
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call scursr (ans, il, i2)
if (ans .eq. 'p') then

call hdcopy
end if
call finitt (-1)
go to 2

end if
C

stop
end
program trick

c
c
c Mark Vangel, June 1989
c
c Program to calculate one sided tolerance limits by the
c modified Trickett-Welch method.
c

logical restrt
dimension n(3)
character*20 flenme, rsfile
common /crs/ restrt, rsfile

c
c -- Restart capability allows restarting from a previously
c computed k function.

write (*,*) 'Restart (I or 0) ?'
read (*,*) ires
if (ires .eq. 1) then

restrt = .true.
write (*,*) 'Restart file ?'
read (*,I(a20)') rsfile

else
restrt = .false.

end if
c
c -- Problem parameters

write (*,*) 'Number of steps for ratio of mean squares '
read (*,*) nstp
write (*,*) 'Filename for k-function files ?I
read (*,' (a20)') flenme
write (*,* 'Number of iterations ?'
read (*,* niter
write (*,*' (1-quantile) for tolerance limit ?'
read (*,* p
write (*,* 'Confidence coefficient for lower limit ?'
read (*,* g
write (*,* 'Number of fixed effects (for nested model) '
read (** n (1)
write (*,* 'Number of random batches ?'
read (*,* n (2)
write (*,* 'Batch size 2'
read (*,*) n (3)
call inteqn (p, g, n, nstp, flenme, niter, 1.)
stop
end
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subroutine evcdf (cumn, idfia, idf2a, cia, c2a, xncpa, etaa, serr)
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C
c Mark Vangel, Oct. 1988
C

c Routine called by 'TLMCDF'.
c

double precision aerr, error, xl, xh, result, fncz
external fncz

c
c -- Parameters for FNCZ

commnon /bi/ idfl, idf2, ci, c2, xncp, con, eta
data hf /.5/

c
c -- Double precision error

aerr - serr
c

c -- Integration rule
irule = 2

c
c -- Put stuff in commnon

idfl = idfla
idf 2 =idf2a
eta = etaa
cl = cia
c2 = c2a
xncp = xncpa
con = alngam(hf*(idfi+idf2)) -aingam(hf*idfi) .-alngam(hf*idf2)

c
c -- Limits of integration. Avoid zero and one.

X1 = 1.d-10
xh = 1.dO - l.d-1O

c
c -- Do the integration.

call dqdag (fncz, xl, xh, aerr, O.dO, irule, result, error)
cumn result

c
return
end
real function fnck Wx

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
real*8 tnc
common /kcom/ xncp, g, idf, df

C
c Called by root finder in 'INVNCT'.
c
c -- Noncentral t with non-integer degrees of freedom
C (Satterthwaite d.f. need not be an integer)

fnck - tnc (dble(x), dble(df), dble(xncp), ifault) -g
return
end
real function fncn (x

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
c Called by root finder in 'INVSPN'.
c

common /sp2/ y
call kspln Cx, yl)
fncn - y -yi
return
end
real function fncr Wx

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
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c Mark Vangel, June 1986
C

c Routine called by root finder in subroutine 'KR'.
C

coxmmon /krl/ ci, c2, idfl, idf2, xkp, xkg, p, g, xncp
fncr - g -gends2 (x, idfl, idf2, ci, c2, xncp, 1.e-7)
return
end
real function fncs (x!

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c

c Called by maximization routine in 'FSUP'.
c

double precision xint
comm~on /ca/ nf ix, k, 1, eta, xkp, xkg, idrv, con

c
idrv = 1
fncs = -xint dble (x))
ret urn
end
double precision function fncy (f)

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
c Mark Vangel, June 1986
C

c Called by numerical integration subroutine in IGENDS21.
C

implicit real (a-h, o-z)
double precision f
commnon Ibl/ idfl, idf2, tval, ci, c2, xncp, con
data hf /0.5/
fncy =dble ((hf*idf2-1) *log Mf +(hf*idfl1l) *log (1 -f))
arg =tval *sqrt (cl*(l. -f) +c2*f)
if (arg .gt. 1.elO) then

tprob - 1.
else if (arg .1t. -1.elO) then

tprob = 0.
else

tprob = tndf (arg, idfl+idf2, xncp)
end if
fncy = dble (exp (fncy +con) *tprob)
return
end
double precision function fncz (f)

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c
c Called by 'DODAG' in 'EVCDF'.
c

implicit real (a-h, o-z)
double precision f
commuon /bl/ idf 1, idf2, ci, c2, xncp, con, eta
data hf, one, zero /.5, 1., 0./

c
fncz -(hf*idf2-one) *dlog (one -f) +(hf*idf1-one) *dlog (f)
X. - eta *idf2 *f /((idfl *(one -f)))

c
c -- Spline interpolation of tolerance limit factor

call kspln (x, xk)
arg -xk *sqrt (ci *f +c2 *(one -f))
if (arg .gt. 1.elO) then

tprob = one
else if (arg .1t. -1.elO) then

tprob - zero
else
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tprob - tndf (arg, idfl+idf2, xncp)
end if
fncz - dble (exp (fncz +con) *tprob)

C

return
end
real function gends2 (tvala, idfla, idf2a, cla,
$ c2a, xncpa, serr)

C
c
c Mark Vangel, June, 1986
c
c Evaluate generalized non-central t using integral
c representation.
c
c tvala -- Argument of gen nct
c idfla, idf2a -- Degrees of freedom for chisquares
c cla, c2a -- Corresponding coefficients
c xncpa -- Noncentrality parameter
c serr -- Absolute error for num. integration
c

implicit real (a-h, o-z)
double precision aerr, error, xl, xh, result, fncy, rerr
external fncy

C
C -- Constants for fncy

common /bl/ idfl, idf2, tval, cl, c2, xncp, con
c
c -- Constants for common block

idfl = idfla
idf2 = idf2a
tval = tvala
cl - cla
c2 = c2a
xncp = xncpa

c
c -- Constants for numerical integration

aerr = serr
rerr = 0.dO
hf = 0.5
xl = l.d-10
xh = l.dO - xl
con = alngam(hf*(idfl+idf2)) -alngam(hf*idfl) -alngam(hf*idf2)
call dqdags (fncy, xl, xh, aerr, rerr, result, error)
gends2 = sngl (result)
return
end
subroutine inispl (lfn)

c
c
c Mark Vangel, Oct. 1988
c
c Routine to initialize a spline fit to data read from
c a file. The unit number of the file is 'ilfn'. The tolerance
c limit files are output from program 'TRICK'.
c

common /cb/ xs (500), xks (500), break (500), c (4, 500), nx

read (lfn, *) nx
do 10 i-i, nx

read (lfn, *) xs (i), xks (i)
10 continue
c

call csint (nx, xs, xks, break, c)
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return
end
subroutine init (p, g, n)

c
c
c Mark Vangel, Oct. 1988
c
c Initialize a few constants that will be needed later.
c

logical known, meowen
dimension n (3)
common /ca/ nfix, k, 1, eta, xkp, xkg, idrv, con
common /kw/ known, rho, xknown
common /cc/ xkzero, xkinf
common /cd/ diag
data one /1./, half /0.5/, rhoeps /l.e-4/

c
nfix n (1)
k =n (2)
1 =n (3)

c
c -- Normal quantiles.

xkp - anorin (p)
xkg = anorin (g)

c
c -- Log beta function.

dfl = nfix *(k -one)
df2 = nfix *(k *(l -one))
con = alngam (half *(dfl +df2)) -
$ alngam (half *dfl) -alngam (half *df2)

c
c -- k values for zero and infinity

call kr (n, p, g, 1., xkzero)
call kfact (p, g, k-1, xkinf)
if (diag .eq. one) write (*,*) 'init : xkzero, xkinf ',
$ xkzero, xkinf

c
c -- If rho is known, calculate constant k value; using limit for
c rho = one

if (known .and. abs (rho -one) .gt. rhoeps) then
t = 1 *rho /(one -rho) +one
call kr (n, p, g, t, xknown)

else if (known) then
xknown - xkinf

end if
C

return
end
subroutine inteqn (pa, ga, n, nstpa, flenme, niter, diaga)

c
c
c Mark Vangel, Oct. 1988
c
c Top-level subroutine to compute tolerance limits by a
c modified Trickett-Welch procedure.
c
c p -- Probability associated with quantile
c g -- Confidence associated with tolerance limit
c n (1) -- Number of fixed factor levels (nfix)
c n (2) -- Number of batches (k)
c n (3) -- Batch size (1)
c nstp -- Number of steps for nuisance parameter
c flenme -- Filename for output of tolerance limit factor
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c estimates
c niter -- Number of iterations
c diag -- =1 for debug lines to print

parameter (maxpts = 500)
logical known, restrt
character*20 flenme, rsfile
character*30 file2
character*3 citer

C

dimension xk (maxpts), xkl (maxpts), cvrate (maxpts),
$ xkstep (maxpts),
$ x (maxpts), n(3)

common /crs/ restrt, rsfile
common /kw/ known, rho, xknown
common /ca/ nfix, k, 1, eta, xkp, xkg, idrv, con
common /cc/ xkzero, xkinf
common /cd/ diag

c

data zero /0./, one /1./, two /2./ , lfn /10/, rh /20./
c

c -- Initialization
known = .false.
nfix = n (1)
k = n (2)
1 =n (3)
p =pa
g =ga
nstp = nstpa
diag = diaga

c
c -- Degrees of freedom

dfl = nfix *(k -one)
df2 = nfix *(k *(l -one))

c
c -- Constants for repeated use

call init (p, g, n)
c
c -- Initial step size for x

dx = (l*rh +one) /(nstp -one)
iter = 0

c
c -- First guess at value at zero. Note that Welch result
c blows up at zero, hence it can't be used here.

x (1) = zero
xk (1) = xkzero
cvrate (1) = g

c
c -- Values at infinity : exact

x (nstp +1) = one
xk (nstp +1) = xkinf
cvrate (nstp +1) - g

c
c -- Option to continue a previous calculation

if (restrt) then
open (unit-10, file-rsfile)
do 20 i-l, nstp +1

read (10, *) x (i), xk (i)
20 continue

else
c
c -- First pass at Welch series equally spaced abcissas

do 21 i-2, nstp
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x Mi = Ci -one) *dx

xk (i) - welch (x Ci), xkg, xkp, n)
21 continue
C

c -- Write out first pass to a scratch file for 'mesh'
open Cunit-lfn, status-'scratch'
write (Ifn, *) nstp
do 22 i-1, nstp +1

write Clfn, *) x (i), xk Ci)
22 continue
C
c -- Find mesh which gives equal spacing in y

rewind (lfn)
call inispl Clfn)
call mesh (x)
close (lfn)

c
c -- Second pass at Welch series :equally spaced ordinates

do 23 i=2, nstp
xk Mi - welch (x Ci), xkg, xkp, n)

23 continue
C

end if
C

c -- Loop over iterations
do 30 i=l, niter

c
C - Filename for output. Iteration number appended to name.

write Cunit=citer, fmt='Cal,i2)') '-',i
if Cciter (2:2) .eq. 1 1) citer (2:2) = 0'
lstnbk = 20

31 continue
if (flenme Clstnbk:lstnbk) .eq. ' )then

lstnbk = Istnbk -1
go to 31

end if
file2 - flenxne Cl:lstnbk) //citer

c
c -- Write out latest results to file

open Cunit=lfn, file-f ile2, status-'new')
write Clfn, *) nstp
do 40 j-1, nstp +1

write (lfn, *) x (j), xk (j)
40 continue
c
c -- Initialize the spline with latest results

rewind Clfn)
call inispl Clfn)

c
c -- Use Trickett-Welch to get improved approximation to xk

call nextk Cn, nstp, x, xk, xkl, xkstep, cvrate, P, g)
c

c -- Rewrite the current approximation with coverage rates
rewind Clfn)
write Clfn, *) nstp
do 50 J-1, nstp +1

write Clfn, *) x (J), xk (J), cvrate CJ)
50 continue
C
C - Update current approximation

do 60 J-1, natp
xk (J) - xkl (j)

60 continue
c
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c -- Now do it all over again ...
iter = iter +1

30 continue
c

return
end
subroutine invnct (ga, dfa, xncpa, xl, xh, t)

c

c
c Mark Vangel, Dec. 1988
c
c Subroutine to invert the noncentral t distribution, the
c limits 'xl' and 'xh' contain the root and are input parameters.
c

con-non /kcom/ xncp, g, idf, df
external fnck
data aerr /l.e-5/, rerr /l.e-5/

C

g = ga
xncp = xncpa
df = dfa
idf = df
a = xl
t = xh
maxfn = 250
call zbren (fnck, aerr, rerr, a, t, maxfn)
return
end
subroutine invspn (xla, xha, ya, x)

c
c
c Mark Vangel, Dec. 1988
c
c Subroutine 'INVSPN' performs inverse spline interpolation.
c This routine is called by 'MESH"
c

common /sp2/ y
external fncn
data zero /0.0/, eps /l.e-5/

c
xl - xla
xh = xha
y - ya

c
errrel = eps
errabs = zero
maxfn = 100
call zbren (fncn, errabs, errrel, xl, xh, maxfn)
x =xh
return
end
subroutine kfact (p, g, idf, xk)

c

c
c Mark Vangel, June 1986
c
c Subroutine to compute tolerance limit factor for a
c simple normal sample.
c

data one /I./, uplim /25./
c

xncp - anorin (p) *sqrt (idf +one)
call invnct (g, float(idf), xncp, one, uplim, t)
xk = t /sqrt (idf +one)
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C

return
end
subroutine kmo (i, j, p, g, xmsr, fp, xk)

c
c
c Mark Vangel, Dec. 1988
c
c Calculate the Mee-Owen tolerance limit factor.
c

data zero /0/, half /.5/, one /1.0/, xh /25/
c
c -- upper confidence bound on variance ratio

dfl = i -one
df2 = i *(j-one)
fconf - fin (fp, df2, dfl)
r = (xmsr*fconf -one) /real (j)

c
c -- noncentrality parameter

xb = (r +one) / (j*r +one)
xncp = sqrt (i*j *xb) *anorin(p)

c
c -- Satterthwaite degrees of freedom

sdf = (r +one)**2 /
& ((r+one/j)**2/(i-l) +(one-one/j)/(i*j))

c
c -- noncentral t quantile

call invnct (g, sdf, xncp, one, xh, xk)
c
c -- tolerance limit factor

xk = xk /sqrt (i*j *xb)
c

return
end
subroutine kr (n, pa, ga, teta, xk)

c
c
C Mark Vangel, June 1986
c
c Routine to determine tolerance limit factors for known
c variance ratio r.
c
c n -- number fixed effects, batches, batch size
c pa -- quantile
c ga -- confidence for lower tolerance limit
c teta -- eta=j*r+l (known) nuisance parameter
c xk -- returned tolerance limit factor
c

dimension n (3)
external fncr
common /krl/ cl, c2, idfl, idf2, xkp, xkg, p, g, xncp

c
c -- Constants for common block

eta - teta
p - pa
g - ga
xkg - anorin (g)
xkp - anorin (p)
if (eta .eq. 0.) eta - .05

c
c -- Degrees of freedom

nfix - n (1)
i -n (2)
j - n (3)
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idfl = nfix *(i-l)
idf2 - nfix *(i*(j-1))

c
c -- Coefficients for linear comb. of chi-squares

cl = i*j -1.
c2 = cl /eta
cl = cl *i/(i-1.)

c

c -- Noncentrality parameter
xncp = xkp *sqrt (i*(l. +(j-1.)/eta))

c
c -- Root finder

aerr = l.e-5
rerr = l.e-5
a =1.
b = 10. *xncp
maxfn = 100
call zbren (fncr, aerr, rerr, a, b, maxfn)
xk =b
return
end
subroutine kspln (eta, xk)

c
c
c Mark Vangel, Oct. 1988
C
c Spline interpolation of tolera-"e limit factor.
c

logical known
dimension m(3)
common /ca/ nfix, k, 1, deta, xkp, xkg, idrv, con
common /cb/ xs (500), xks (500), break (500), c (4, 500), nx
common /kw/ known, rho, xknown
data iord /10/, one /1.0/

c
c -- Use constant value if rho is known

if (known .and. rho .ge. 0) then
xk - xknown

c
c -- Truncate function at upper limit calculated

else if (eta .gt. xs(nx)) then
xk = xks (nx)

else
c
c -- Spline interpolation

xk = csval (eta, nx-1, break, c)
end if
return
end
subroutine mesh (xnew)

c
common /cb/ xs (500), xks (500), break (500), c (4, 500), nx

c
c Mark Vangel, Dec. 1988
c
c The initial mesh of abscissa values is taken to be equally
c spaced. A better approximation can be obtained if more points
c are taken where the function being estimated .hanges most
c rapidly, however. Subroutine 'MESH' takes as input the
c initial equally spaced mesh and the Welch approximation at
c these mesh points. The ordinate is equally divided into
c intervals and the Welch approximation provides (via inverse
c interpolation in 'INVSPN') the corresponding new mesh of
c abscissa values. This new mesh is used for all succeeding
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c iteration.
c

dimension xnew (1)
data one /1.!

C

dity -(xks(nx) -xks(1)) /(nx-one)
do 10 i-2, nx-1

y -(i-1) *dlty +xks (1)
call invspn (xs(l), xs(nx), y, xnew(i))

10 contin-ue
xnew(l) = xs(l)
xnew (nx) - xs (nx)
return
end
subroutine nctdln (idf, tval, xncp, densty)

p1 - tndf (sqrt((idf+2.)/idf) *tval, idf+2, xncp)
p2 = tndf (tval, idf, xncp)

C

densty =(idf/tval) *(pl -p2)
return
end
subroutine nctd2n (idf, tval, xncp, dry)

c - sqrt ((idf+2.)/idf)
call nctdln (idf+2, c*tval, xncp, p1)
call nctdln (idf . tval, xncp, p2)
dry = (idfltval) *(pl -p2)
return
end
subroutine nctd3n (idf, tval, xncp, dry)

c - sqrt ((idf+2.)/idf)
call nctd2n (idf+2, c*tval, xncp, pl)
call nctd2n (idf, tval, xncp, p2)
dry (idf/tval) *(pl -p2)
return
end
subroutine nctd4n (idf, tval, xncp, dry)

c = sqrt ((idf+2.)/idf)
call nctd3n (idf+2, c*tval, xncp, p1)
call nctd3n (idf, tval, xncp, p2)
dry - (idf/tval) *(pl -p2)
return
end
subroutine nctd5n (idf, tval, xncp, dry)

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c
c = aqrt ((idf+2.)/idf)
call nctd4n (idf+2, c*tval, xncp, p1)
call nctd4n (idf, tval, xncp, p2)
dry - (idf/tval) *(pl -p2)
return
end
subroutine nctdrv (k, idf, tval, xncp, dry)

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c
c Mark Vangel, May 1986
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c Evaluate either the noncentral t cumulative (k=0) or
c the kth derivative of the cumulative with respect to the
c argument (k=,2,3,4,5) . derivatives are calculated exactly
c in terms of the cumulative by means of a recursion formula.
c

if (k .eq. 0) then
dry = tndf (tval, idf, xncp)

else if (k .eq. 1) then
call nctdln (idf, tval, xncp, dry)

else if (k .eq. 21 then
call nctd2n (idf, tval, xncp, dry)

else if (k .eq. 3) then
call nctd3n (idf, tval, xncp, drv)

else if (k .eq. 4) then
call nctd4n (idf, tval, xncp, drv)

else if (k .eq. 5) then
call nctd5n (idf, tval, xncp, dry)

end if
return
end
subroutine nextk
$ (n, nstp, x, xk0, xkl, xkstep, cvrate, pa, ga)

c
c
c Mark Vangel, Oct. 1988
c
c Given an input tolerance limit factor xkO and the parameters
c of the problem, this subroutine calculates the next approximation
c xkl by a modified Trickett-Welch procedure.
c
c n (1) -- Number of fixed factor levels (nfix)
c n (2) -- Number of batches (k)
c n (3) -- Batch size (1)
c nstp -- Number of intervals for k-function
c x -- Values of nuisance parameter
c xk0 -- Input k-function
c xkl -- Output k-function
c cvrate -- Coverage probability of xkl
c p -- Probability level of quantile
c g -- Confidence level of tolerance limit
c

dimension x(1), xk0 (1), xkl (1), xkstep (1), cvrate (1), n(3)
double precision tl, th, daerr, drerr, xi0, xil, errest
common /ca/ nfix, k, 1, eta, xkp, xkg, idrv, con
common /cd/ diag
common /sblk/ oldsup
external xint
data tl /l.d-5/, th /l.dO/, aerr/0.0/, rerr/l.e-4/, one /1./,
$ zero /0./, daerr /l.d-5/, drerr /0.dO/

c
c -- Initialize some constants

th - one -tl
nfix - n (1)
k n (2)
1 n (3)
p pa
g ga
dfl - nfix *(k -1)
df2 - nfix *(k*(l -1))
irule - 2

c
c -- Find peak of integrand and determine transformation

xO - sup (float(20), ier)
if (ier .ne. 0) xO - oldsup
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if (xO .eq. zero) xO - dfl /(dfl +df2)
oldsup = x0
alpha = (dfl /df2) *(one -xO) /xO
write (*,*) ' alpha = ', alpha

do 10 i=l, nstp
eta = alpha*x(i) +one

c
c -- First integral

idrv = 0
call dqdag (xint, tl, th, daerr, drerr, irule, xi0, errest)

c
c -- Second integral (derivative)

idrv = 1
call dqdag (xint, tl, th, daerr, drerr, irule, xil, errest)
cvrate i) = xi0
Ykstep (i) = (g -cvrate (i)) /xil
xkl (i) = xk0 (i) +xkstep (i)
if (diag .eq. one) write (*,*) 'nextk : k, cvrate, step ',

$ i, x (i), xk0 (i), cvrate (i), xkstep (i)
10 continue
c

return
end
real function sup (r, ier)

c
c
c Mark Vangel, Dec 1988
c
c Find the maximum of Trickett-Welch integrand for
c variance ratio equal to r. The spline for XK must be
c initialized before this routine may be used. Also, the
c stuff in /ca/ must be available.
c

common /ca/ nfix, k, 1, eta, xkp, xkg, idrv, con
external fncs
data one /1./, eps /l.e-5/, xacc /.001/
eta = l*r +one

c
c -- find minimum by Brent's method

xguess = one /2
bound = xguess -eps
xstep = one /4
maxfn = 100
call uvmif (fncs, xguess, step, bound, xacc, maxfn, peak)
sup = peak

c
return
end
subroutine tlmcdf (xanu, s2b, s2w, n, p, t, cum, flenme)

c
c
c Mark Vangel, Oct. 1988
c
c Cumulative distribution function of the lower confidence
c bound on s quantile from a random effects model. This routine
c can be used with a nested model. The results in the paper
c correspond to nfix1.
c
c xmu -- population mean
c s2b -- population variance between groups
c s2w -- population variance within groups
c nfix -- number of groups
c i -- number of batches
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C j -- batch size
c p -- probability associated with quantile
c t -- value at which cdf is to be evaluated
c cum -- probability tol. limit, is less than pth quantile
c flenme -- name of ASCII file containing tolerance limit factor
c row 1 number of steps
c row 2..n msr /(msr +1), k-factor
c row 2 : msr = 0
c row n : msr - infinity
c (output from porgram TRICK)
c
c

logical known
character*20 flenme
dimension n (3)

c
c -- Spline for tolerance limit factor

common /cb/ xs (500), xks (500), break (500), c (4, 500), nx
c
c -- Flag set if rho taken to be known

common /kw/ known, dummy, xknown
data lfn /10/

c
c -- Initialize spline for tolerance limit factor

if (.not. known) then
open (unit=lfn, file=flenme, iostat=istat)
rewind (ifn)
call inispl (lfn)

end if
nfix = n (1)
i = n (2)
j = n (3)

c
c -- Set up parameters

aerr = l.e-5
xkp = anorin (p)
eta = j *s2b /s2w +1.
idfl = nfix *(i-1)
idf2 = nfix *(i *(j -1))
cl = (idfl +idf2) /nfix
c2 = cl /eta
cl = cl *i /(i -1.)
xncp - (nu -t) /sqrt ((j*s2b +s2w) /(i*j))

c
c -- Evaluate cdf of lower tolerance limit

call evcdf (cum, idfl, idf2, cl, c2, xncp, eta, aerr)
c

return
end
real function welch (ymsr, xkg, xkp, m)

c
c
c Mark Vangel, July 1986
c
c First order Welch-type expansion for the tolerance
c limit factor.
c

real i, 1
dimension m (3)

c
i = mei) *(m(2)-1) +1
1 real (m(1) *m(2) *(m(3)-l)) /

$ real (m(i) *(m(2)-l) +1) +1

c
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xms r =yms r

ti - sqrt (l/(1+(l-l)/xnsr))
t2 = sqrt (1/ (xmsr*xmsr + (11) *xsr))
rti = sqrt Wi

rtn = sqrt (fioat(n))
xli 1/ (1*1)
x12 =(-)1)**2

C

xk -xkp +tllrtn *(xkg +1.I(4*Ci-l)) *
$ xkg *(xkg*xkg +1) +xkp*xkp*xkg *n. *tl*t. *xll
$ +xkp *rtn *tl*tl*tl *xll +xkp*xkg*xkg *rtn *tl /1)
$ +lI(4*i*(l-1.dO)) *(
$ +xkp*xkp* xkg *n *t2*t2 *x12 +xkp *rtn *t2*t2*t2 *xl2))

c

welch = xk
return
end

double precision function xint (x)
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C
C Mark Vangel, Oct. 1988
c
c Function to calculate two integrands needed for the
c Trickett-Welch procedure. One integrand is a noncentral
c t cumulative 'weighted' by a beta density; the other
c integrand is the deriva _ive of this first integrand with
c respect to the k-function (which is part of the argument
c of the noncentral t cumulative).
c

double precision x
common /ca/ nfix, k, 1, eta, xkp, xkg, idrv, con
data one /l.!, half /0.5/, zero /0.0/, tiny /l.e-61

c
c -- Between, within, total degrees of freedom

dfl = nfix *(k -1)
df2 = nfix *(k *(l -1))
df - dfl +df2

c
c -- Calculate mean square ratio. Use asymptote when mean
c square ratio is infinite

X1 = x
if (xl .1e. zero) xl = tiny
r =eta *df2 *xl / Cdfl *(one -xl))

c
c -- Cubic spline interpolation of k-function

call kspln Cr, xk)
c
c -- Noncentrality parameter and argument for noncentral t

xncp - xkp *sqrt Ck*one +(I -one) /eta))
arg - sqrt (df Infix *(k/(k -one) *xl +(one -xl) /eta))

c
c -- This subroutine can calculate higher derivatives than
c the first if desired.

argl one
fact - one
do 10 i-1, idrv

argi - argi *arg
fact = fact *i
argi - argI /fact

10 continue
c
C -- Noncentral t cunulative or it's derivatives

A2 2



call nctdrv (idrv, int(df), xkc *arg, xncp, prob)
C

c -- Beta density
if (xl *(one -xl) .ne. zero) then

beta - (half *dfl -one) *log (xl)
$+(half *df2 -one) *log (one -xl)

else if (xl .eq. zero) then
beta = (half *df2 -one) *log (one -xl)

else
beta - (half *dfl -one) *log (xl)

end if
C

c -- finally, return the integrand.
xint = argl *prob *exp (beta +con)

C

return
end
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